3.5.4 \(\int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx\) [404]

3.5.4.1 Optimal result
3.5.4.2 Mathematica [A] (verified)
3.5.4.3 Rubi [A] (verified)
3.5.4.4 Maple [A] (verified)
3.5.4.5 Fricas [A] (verification not implemented)
3.5.4.6 Sympy [C] (verification not implemented)
3.5.4.7 Maxima [A] (verification not implemented)
3.5.4.8 Giac [A] (verification not implemented)
3.5.4.9 Mupad [B] (verification not implemented)

3.5.4.1 Optimal result

Integrand size = 15, antiderivative size = 103 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\frac {(-a+b x)^{2/3}}{a x}-\frac {b \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{-a+b x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3}}+\frac {b \log (x)}{6 a^{4/3}}-\frac {b \log \left (\sqrt [3]{a}+\sqrt [3]{-a+b x}\right )}{2 a^{4/3}} \]

output
(b*x-a)^(2/3)/a/x+1/6*b*ln(x)/a^(4/3)-1/2*b*ln(a^(1/3)+(b*x-a)^(1/3))/a^(4 
/3)-1/3*b*arctan(1/3*(a^(1/3)-2*(b*x-a)^(1/3))/a^(1/3)*3^(1/2))/a^(4/3)*3^ 
(1/2)
 
3.5.4.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.24 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\frac {6 \sqrt [3]{a} (-a+b x)^{2/3}-2 \sqrt {3} b x \arctan \left (\frac {1-\frac {2 \sqrt [3]{-a+b x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 b x \log \left (\sqrt [3]{a}+\sqrt [3]{-a+b x}\right )+b x \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{-a+b x}+(-a+b x)^{2/3}\right )}{6 a^{4/3} x} \]

input
Integrate[1/(x^2*(-a + b*x)^(1/3)),x]
 
output
(6*a^(1/3)*(-a + b*x)^(2/3) - 2*Sqrt[3]*b*x*ArcTan[(1 - (2*(-a + b*x)^(1/3 
))/a^(1/3))/Sqrt[3]] - 2*b*x*Log[a^(1/3) + (-a + b*x)^(1/3)] + b*x*Log[a^( 
2/3) - a^(1/3)*(-a + b*x)^(1/3) + (-a + b*x)^(2/3)])/(6*a^(4/3)*x)
 
3.5.4.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {52, 68, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt [3]{b x-a}} \, dx\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {b \int \frac {1}{x \sqrt [3]{b x-a}}dx}{3 a}+\frac {(b x-a)^{2/3}}{a x}\)

\(\Big \downarrow \) 68

\(\displaystyle \frac {b \left (\frac {3}{2} \int \frac {1}{a^{2/3}-\sqrt [3]{b x-a} \sqrt [3]{a}+(b x-a)^{2/3}}d\sqrt [3]{b x-a}-\frac {3 \int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b x-a}}d\sqrt [3]{b x-a}}{2 \sqrt [3]{a}}+\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}+\frac {(b x-a)^{2/3}}{a x}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {b \left (\frac {3}{2} \int \frac {1}{a^{2/3}-\sqrt [3]{b x-a} \sqrt [3]{a}+(b x-a)^{2/3}}d\sqrt [3]{b x-a}-\frac {3 \log \left (\sqrt [3]{b x-a}+\sqrt [3]{a}\right )}{2 \sqrt [3]{a}}+\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}+\frac {(b x-a)^{2/3}}{a x}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {b \left (\frac {3 \int \frac {1}{-(b x-a)^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b x-a}}{\sqrt [3]{a}}\right )}{\sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{b x-a}+\sqrt [3]{a}\right )}{2 \sqrt [3]{a}}+\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}+\frac {(b x-a)^{2/3}}{a x}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {b \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b x-a}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a}}-\frac {3 \log \left (\sqrt [3]{b x-a}+\sqrt [3]{a}\right )}{2 \sqrt [3]{a}}+\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}+\frac {(b x-a)^{2/3}}{a x}\)

input
Int[1/(x^2*(-a + b*x)^(1/3)),x]
 
output
(-a + b*x)^(2/3)/(a*x) + (b*(-((Sqrt[3]*ArcTan[(1 - (2*(-a + b*x)^(1/3))/a 
^(1/3))/Sqrt[3]])/a^(1/3)) + Log[x]/(2*a^(1/3)) - (3*Log[a^(1/3) + (-a + b 
*x)^(1/3)])/(2*a^(1/3))))/(3*a)
 

3.5.4.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 68
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.5.4.4 Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00

method result size
pseudoelliptic \(-\frac {\arctan \left (\frac {\left (a^{\frac {1}{3}}-2 \left (b x -a \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3 a^{\frac {1}{3}}}\right ) \sqrt {3}\, b x +\ln \left (a^{\frac {1}{3}}+\left (b x -a \right )^{\frac {1}{3}}\right ) b x -\frac {\ln \left (\left (b x -a \right )^{\frac {2}{3}}-a^{\frac {1}{3}} \left (b x -a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right ) b x}{2}-3 \left (b x -a \right )^{\frac {2}{3}} a^{\frac {1}{3}}}{3 a^{\frac {4}{3}} x}\) \(103\)
risch \(-\frac {-b x +a}{a x \left (b x -a \right )^{\frac {1}{3}}}-\frac {b \ln \left (a^{\frac {1}{3}}+\left (b x -a \right )^{\frac {1}{3}}\right )}{3 a^{\frac {4}{3}}}+\frac {b \ln \left (\left (b x -a \right )^{\frac {2}{3}}-a^{\frac {1}{3}} \left (b x -a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{6 a^{\frac {4}{3}}}+\frac {b \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x -a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}-1\right )}{3}\right )}{3 a^{\frac {4}{3}}}\) \(110\)
derivativedivides \(3 b \left (\frac {\left (b x -a \right )^{\frac {2}{3}}}{3 a b x}+\frac {-\frac {\ln \left (a^{\frac {1}{3}}+\left (b x -a \right )^{\frac {1}{3}}\right )}{3 a^{\frac {1}{3}}}+\frac {\ln \left (\left (b x -a \right )^{\frac {2}{3}}-a^{\frac {1}{3}} \left (b x -a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{6 a^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x -a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}-1\right )}{3}\right )}{3 a^{\frac {1}{3}}}}{3 a}\right )\) \(113\)
default \(3 b \left (\frac {\left (b x -a \right )^{\frac {2}{3}}}{3 a b x}+\frac {-\frac {\ln \left (a^{\frac {1}{3}}+\left (b x -a \right )^{\frac {1}{3}}\right )}{3 a^{\frac {1}{3}}}+\frac {\ln \left (\left (b x -a \right )^{\frac {2}{3}}-a^{\frac {1}{3}} \left (b x -a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{6 a^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x -a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}-1\right )}{3}\right )}{3 a^{\frac {1}{3}}}}{3 a}\right )\) \(113\)

input
int(1/x^2/(b*x-a)^(1/3),x,method=_RETURNVERBOSE)
 
output
-1/3*(arctan(1/3*(a^(1/3)-2*(b*x-a)^(1/3))/a^(1/3)*3^(1/2))*3^(1/2)*b*x+ln 
(a^(1/3)+(b*x-a)^(1/3))*b*x-1/2*ln((b*x-a)^(2/3)-a^(1/3)*(b*x-a)^(1/3)+a^( 
2/3))*b*x-3*(b*x-a)^(2/3)*a^(1/3))/a^(4/3)/x
 
3.5.4.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 328, normalized size of antiderivative = 3.18 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b x \sqrt {\frac {\left (-a\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b x + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, {\left (b x - a\right )}^{\frac {2}{3}} \left (-a\right )^{\frac {2}{3}} + {\left (b x - a\right )}^{\frac {1}{3}} a + \left (-a\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a\right )^{\frac {1}{3}}}{a}} - 3 \, {\left (b x - a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {2}{3}} - 3 \, a}{x}\right ) + \left (-a\right )^{\frac {2}{3}} b x \log \left ({\left (b x - a\right )}^{\frac {2}{3}} + {\left (b x - a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {1}{3}} + \left (-a\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a\right )^{\frac {2}{3}} b x \log \left ({\left (b x - a\right )}^{\frac {1}{3}} - \left (-a\right )^{\frac {1}{3}}\right ) + 6 \, {\left (b x - a\right )}^{\frac {2}{3}} a}{6 \, a^{2} x}, \frac {6 \, \sqrt {\frac {1}{3}} a b x \sqrt {-\frac {\left (-a\right )^{\frac {1}{3}}}{a}} \arctan \left (\sqrt {\frac {1}{3}} {\left (2 \, {\left (b x - a\right )}^{\frac {1}{3}} + \left (-a\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a\right )^{\frac {1}{3}}}{a}}\right ) + \left (-a\right )^{\frac {2}{3}} b x \log \left ({\left (b x - a\right )}^{\frac {2}{3}} + {\left (b x - a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {1}{3}} + \left (-a\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a\right )^{\frac {2}{3}} b x \log \left ({\left (b x - a\right )}^{\frac {1}{3}} - \left (-a\right )^{\frac {1}{3}}\right ) + 6 \, {\left (b x - a\right )}^{\frac {2}{3}} a}{6 \, a^{2} x}\right ] \]

input
integrate(1/x^2/(b*x-a)^(1/3),x, algorithm="fricas")
 
output
[1/6*(3*sqrt(1/3)*a*b*x*sqrt((-a)^(1/3)/a)*log((2*b*x + 3*sqrt(1/3)*(2*(b* 
x - a)^(2/3)*(-a)^(2/3) + (b*x - a)^(1/3)*a + (-a)^(1/3)*a)*sqrt((-a)^(1/3 
)/a) - 3*(b*x - a)^(1/3)*(-a)^(2/3) - 3*a)/x) + (-a)^(2/3)*b*x*log((b*x - 
a)^(2/3) + (b*x - a)^(1/3)*(-a)^(1/3) + (-a)^(2/3)) - 2*(-a)^(2/3)*b*x*log 
((b*x - a)^(1/3) - (-a)^(1/3)) + 6*(b*x - a)^(2/3)*a)/(a^2*x), 1/6*(6*sqrt 
(1/3)*a*b*x*sqrt(-(-a)^(1/3)/a)*arctan(sqrt(1/3)*(2*(b*x - a)^(1/3) + (-a) 
^(1/3))*sqrt(-(-a)^(1/3)/a)) + (-a)^(2/3)*b*x*log((b*x - a)^(2/3) + (b*x - 
 a)^(1/3)*(-a)^(1/3) + (-a)^(2/3)) - 2*(-a)^(2/3)*b*x*log((b*x - a)^(1/3) 
- (-a)^(1/3)) + 6*(b*x - a)^(2/3)*a)/(a^2*x)]
 
3.5.4.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.88 (sec) , antiderivative size = 838, normalized size of antiderivative = 8.14 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\text {Too large to display} \]

input
integrate(1/x**2/(b*x-a)**(1/3),x)
 
output
-2*a**(5/3)*b**(7/3)*(-a/b + x)**(4/3)*log(1 - b**(1/3)*(-a/b + x)**(1/3)* 
exp_polar(I*pi/3)/a**(1/3))*gamma(2/3)/(9*a**3*b**(4/3)*(-a/b + x)**(4/3)* 
exp(2*I*pi/3)*gamma(5/3) + 9*a**2*b**(7/3)*(-a/b + x)**(7/3)*exp(2*I*pi/3) 
*gamma(5/3)) - 2*a**(5/3)*b**(7/3)*(-a/b + x)**(4/3)*exp(2*I*pi/3)*log(1 - 
 b**(1/3)*(-a/b + x)**(1/3)*exp_polar(I*pi)/a**(1/3))*gamma(2/3)/(9*a**3*b 
**(4/3)*(-a/b + x)**(4/3)*exp(2*I*pi/3)*gamma(5/3) + 9*a**2*b**(7/3)*(-a/b 
 + x)**(7/3)*exp(2*I*pi/3)*gamma(5/3)) - 2*a**(5/3)*b**(7/3)*(-a/b + x)**( 
4/3)*exp(-2*I*pi/3)*log(1 - b**(1/3)*(-a/b + x)**(1/3)*exp_polar(5*I*pi/3) 
/a**(1/3))*gamma(2/3)/(9*a**3*b**(4/3)*(-a/b + x)**(4/3)*exp(2*I*pi/3)*gam 
ma(5/3) + 9*a**2*b**(7/3)*(-a/b + x)**(7/3)*exp(2*I*pi/3)*gamma(5/3)) - 2* 
a**(2/3)*b**(10/3)*(-a/b + x)**(7/3)*log(1 - b**(1/3)*(-a/b + x)**(1/3)*ex 
p_polar(I*pi/3)/a**(1/3))*gamma(2/3)/(9*a**3*b**(4/3)*(-a/b + x)**(4/3)*ex 
p(2*I*pi/3)*gamma(5/3) + 9*a**2*b**(7/3)*(-a/b + x)**(7/3)*exp(2*I*pi/3)*g 
amma(5/3)) - 2*a**(2/3)*b**(10/3)*(-a/b + x)**(7/3)*exp(2*I*pi/3)*log(1 - 
b**(1/3)*(-a/b + x)**(1/3)*exp_polar(I*pi)/a**(1/3))*gamma(2/3)/(9*a**3*b* 
*(4/3)*(-a/b + x)**(4/3)*exp(2*I*pi/3)*gamma(5/3) + 9*a**2*b**(7/3)*(-a/b 
+ x)**(7/3)*exp(2*I*pi/3)*gamma(5/3)) - 2*a**(2/3)*b**(10/3)*(-a/b + x)**( 
7/3)*exp(-2*I*pi/3)*log(1 - b**(1/3)*(-a/b + x)**(1/3)*exp_polar(5*I*pi/3) 
/a**(1/3))*gamma(2/3)/(9*a**3*b**(4/3)*(-a/b + x)**(4/3)*exp(2*I*pi/3)*gam 
ma(5/3) + 9*a**2*b**(7/3)*(-a/b + x)**(7/3)*exp(2*I*pi/3)*gamma(5/3)) +...
 
3.5.4.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.13 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\frac {\sqrt {3} b \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x - a\right )}^{\frac {1}{3}} - a^{\frac {1}{3}}\right )}}{3 \, a^{\frac {1}{3}}}\right )}{3 \, a^{\frac {4}{3}}} + \frac {{\left (b x - a\right )}^{\frac {2}{3}} b}{{\left (b x - a\right )} a + a^{2}} + \frac {b \log \left ({\left (b x - a\right )}^{\frac {2}{3}} - {\left (b x - a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + a^{\frac {2}{3}}\right )}{6 \, a^{\frac {4}{3}}} - \frac {b \log \left ({\left (b x - a\right )}^{\frac {1}{3}} + a^{\frac {1}{3}}\right )}{3 \, a^{\frac {4}{3}}} \]

input
integrate(1/x^2/(b*x-a)^(1/3),x, algorithm="maxima")
 
output
1/3*sqrt(3)*b*arctan(1/3*sqrt(3)*(2*(b*x - a)^(1/3) - a^(1/3))/a^(1/3))/a^ 
(4/3) + (b*x - a)^(2/3)*b/((b*x - a)*a + a^2) + 1/6*b*log((b*x - a)^(2/3) 
- (b*x - a)^(1/3)*a^(1/3) + a^(2/3))/a^(4/3) - 1/3*b*log((b*x - a)^(1/3) + 
 a^(1/3))/a^(4/3)
 
3.5.4.8 Giac [A] (verification not implemented)

Time = 0.53 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.40 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\frac {\frac {2 \, \sqrt {3} b^{2} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x - a\right )}^{\frac {1}{3}} + \left (-a\right )^{\frac {1}{3}}\right )}}{3 \, \left (-a\right )^{\frac {1}{3}}}\right )}{\left (-a\right )^{\frac {1}{3}} a} - \frac {b^{2} \log \left ({\left (b x - a\right )}^{\frac {2}{3}} + {\left (b x - a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {1}{3}} + \left (-a\right )^{\frac {2}{3}}\right )}{\left (-a\right )^{\frac {1}{3}} a} - \frac {2 \, \left (-a\right )^{\frac {2}{3}} b^{2} \log \left ({\left | {\left (b x - a\right )}^{\frac {1}{3}} - \left (-a\right )^{\frac {1}{3}} \right |}\right )}{a^{2}} + \frac {6 \, {\left (b x - a\right )}^{\frac {2}{3}} b}{a x}}{6 \, b} \]

input
integrate(1/x^2/(b*x-a)^(1/3),x, algorithm="giac")
 
output
1/6*(2*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x - a)^(1/3) + (-a)^(1/3))/(-a 
)^(1/3))/((-a)^(1/3)*a) - b^2*log((b*x - a)^(2/3) + (b*x - a)^(1/3)*(-a)^( 
1/3) + (-a)^(2/3))/((-a)^(1/3)*a) - 2*(-a)^(2/3)*b^2*log(abs((b*x - a)^(1/ 
3) - (-a)^(1/3)))/a^2 + 6*(b*x - a)^(2/3)*b/(a*x))/b
 
3.5.4.9 Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.29 \[ \int \frac {1}{x^2 \sqrt [3]{-a+b x}} \, dx=\frac {{\left (b\,x-a\right )}^{2/3}}{a\,x}-\frac {b\,\ln \left ({\left (b\,x-a\right )}^{1/3}+a^{1/3}\right )}{3\,a^{4/3}}+\frac {\ln \left (\frac {{\left (b-\sqrt {3}\,b\,1{}\mathrm {i}\right )}^2}{4\,a^{5/3}}+\frac {b^2\,{\left (b\,x-a\right )}^{1/3}}{a^2}\right )\,\left (b-\sqrt {3}\,b\,1{}\mathrm {i}\right )}{6\,a^{4/3}}+\frac {\ln \left (\frac {{\left (b+\sqrt {3}\,b\,1{}\mathrm {i}\right )}^2}{4\,a^{5/3}}+\frac {b^2\,{\left (b\,x-a\right )}^{1/3}}{a^2}\right )\,\left (b+\sqrt {3}\,b\,1{}\mathrm {i}\right )}{6\,a^{4/3}} \]

input
int(1/(x^2*(b*x - a)^(1/3)),x)
 
output
(b*x - a)^(2/3)/(a*x) - (b*log((b*x - a)^(1/3) + a^(1/3)))/(3*a^(4/3)) + ( 
log((b - 3^(1/2)*b*1i)^2/(4*a^(5/3)) + (b^2*(b*x - a)^(1/3))/a^2)*(b - 3^( 
1/2)*b*1i))/(6*a^(4/3)) + (log((b + 3^(1/2)*b*1i)^2/(4*a^(5/3)) + (b^2*(b* 
x - a)^(1/3))/a^2)*(b + 3^(1/2)*b*1i))/(6*a^(4/3))